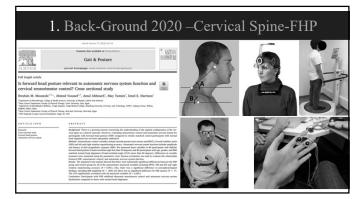
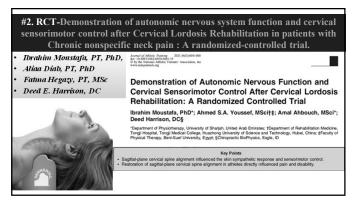


5

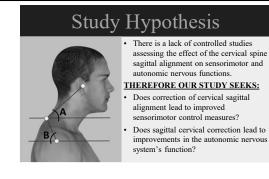
6

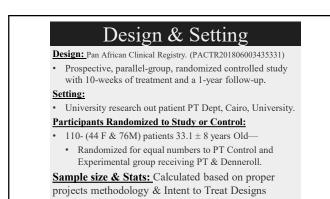

Sective territor, at in the section of the section of


9

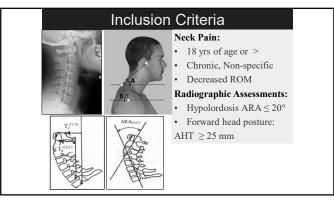
Journal of Clinical Medicine: A Special Edition & Inv https://www.mdpi.com/journal/jcm/special_issues/WB57SSGGE8	vitation
Special Issue "Spine Rehabilitation in 2022 and Bevond"	
Special Issue Editors	
Special Issue Information Keywords Published Papers	•
A special issue of Journal of Clinical Medicine (ISSN 2077-0383). This special issue belongs to the section "Clinical Rehabilitation".	
Deadline for manuscript submissions 30 June 2023 Viewed by 45290	

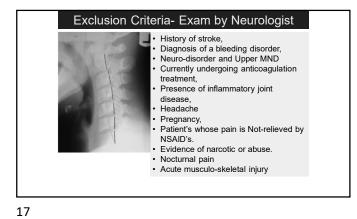
10

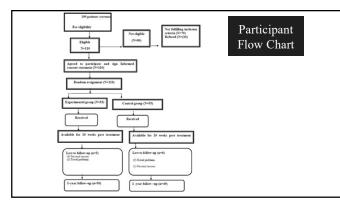

11

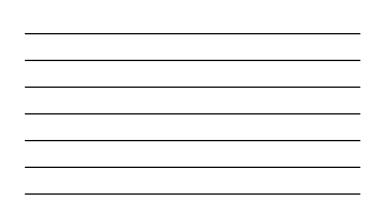


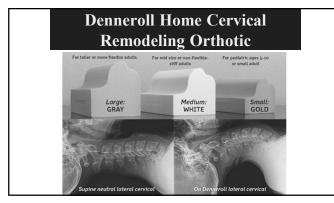
12



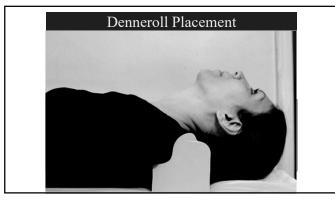



14




18

	Patie	ent Dei	mographics	
	Experimental group (n=55)	Control group (n=55)		
Age(y)	40.5a3	42+4	1	
Weight(kg)	76 ± 10	80 ± 9	-	
Gender (%)			-	
Male	30	29	-	
Female	25	26	-	
Body mass index mean (SD).Kg/m ²	-		-	
Marital status			-	
Single	4	3	-	
Married	49	51	-	
Separated, divorced, or widowed	2	1	-	
Pain duration			-	
1-5 y	22(36.5%)	19(31.5%)	-	
>5 y	38(63.5%)	41(68.5%)	-	
Smoking			-	
Light smoker	33	30	-	
Heavy smoker	5	7	-	
No Smoker	12	13	-1	

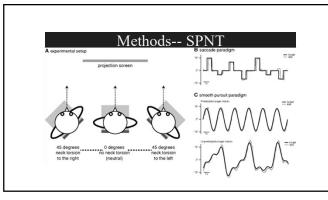

Methods--Treatment

- Both groups 10-wk x 3 multi-modal program:
- ✓ Soft Tissue Mobilization-cervical-upper thoracic
- ✓ Cervical & Thoracic Spine Mobilization / manipulation. Thrust to upper middle and lower region.
- ✓ Hot packs for 15 min & TENS for 20 minutes.
- ✓ Home Functional Exercise Protocol---Deep cervical flexor endurance training, Cervical extension/retraction, scapular retraction exercises (supine), 10 seconds and 10 reps.
 ✓ At Home: 1x daily with log sheets and weekly checks.
- Study group received Denneroll cervical traction 3 x wk for 10 weeks.

20

21

22

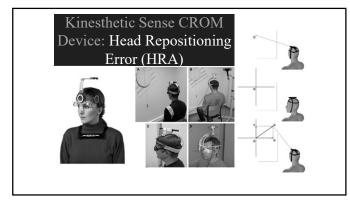

X-ray Outcome measures-:

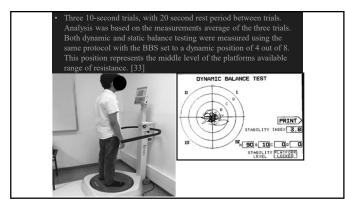
- C2-C7 horizontal offset for anterior head translation.
- ARA C2-C7= Cervical Lordosis.

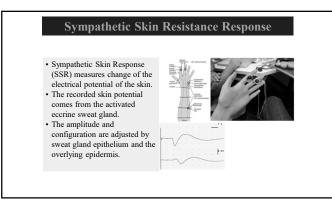
Pain and Functional Measures

- <u>NRS 0-10:</u>
- <u>NDI</u>: Minimal clinically important change (MCIC)= 10.5 points <u>Sympathetic Skin Response</u>: EMG electrodes palmer-reference dorsum of hand –stimulus contralateral side at wrist-- Bilateral.
- Cervical Positioning sense: CROM -head repositioning to 30°
- Head Eye Movement Control: Smooth pursuit neck torsion test.
- Posture Stability: Platform –Biodex Balance System. 4/8 resistance to perturbations.
- Evaluation intervals: baseline, 10 weeks, 1 year follow up

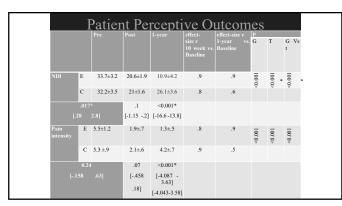
23




24


25

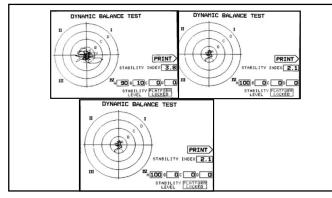
26



27

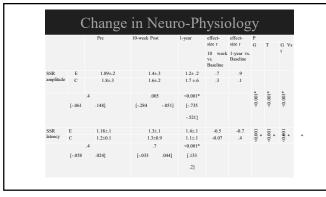
		Pre	Pre Post treatment 1-year follow up 1			P			
		treatment			G	Т	G Vs t		
ARA	E	5.3±5	20±2.9	19.4± 2.1					
	С	5.8±4.9	6.9±4.7	5.7 ±.4.9	1:	:	-1		
.4			<0.001	<0.001*	*100.0>		<0.001*		
	[-2.6 1	.1]	[11.5 14.5]	[12.2 15.08]					
AHT	E	3.6±.6	1.1±.3	1.3±.6	*10	•10	*		
	С	3±0.5	2.9±0.7	2.9±.8	<0.001*	<0.001*	<0.001*		
	.5	I	<0.001*	<0.001*		-			
	[17 .	3]	[-2 -1.58]	[-1.93 -1.48]					

29

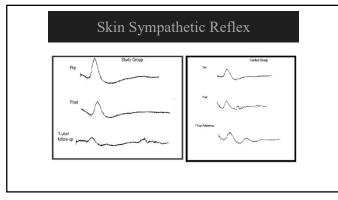


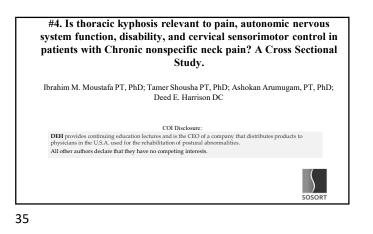

30

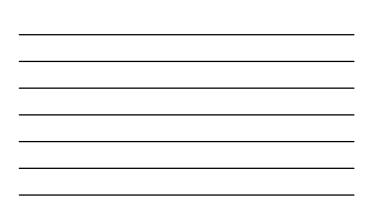
		Pre	Post treatment	1-year follow up	Р			
		treatment			G	T	GVst	
SPENT	E	.3±.07	.2±.07	.1±.07	-100'0-	.100'0-	+100'0>	Sensori-
	C	.36±.04	.2±.06	.3±.05	8	8	8	Motor
[(.5	161	.48	<0.001* [228175]				Outcomes
OSI	E	.7±.07	.4±.1	.49±.06		1		
	c	.6=.1	.5n.14	.6 ±.07			:	Elector-oculog
.007	54 .1		.12	<0.001*	-100'0>	+100'0>	-100'0>	raphy
Especificating accuracy	E	3.4±.7	2.6±.6	1.8±.8	-	:	-	OSI balance
Right rotation	С	3.2±.9	2.4±.7	3.4=1.1	<0.001*	-100'0>	*100'0>	HRA
	.06		.3	<0.001*	-	-	-	
[.0	25	66]	[15 .38]	[-1.9 -1.24]				
Repositioning accuracy left conston	E	3.7±1.1	2.5a.8	1.5a.5	:	:	:	-
100308	с	3.8 ±.9	2.8±.5	3.7#.7	•100'0>	+100'0>	-100'0>	
	0.3		.07	<0.001*	-	\vdash	-	-
[-	58	21]	[531 .021]	[-2.33 -1.7]				

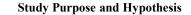

-		

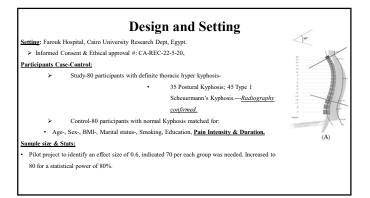
31

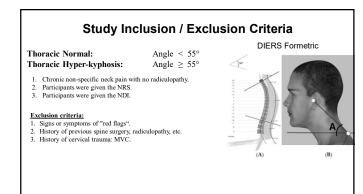



32

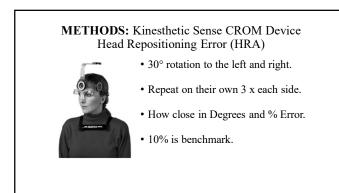

33

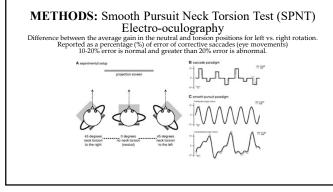


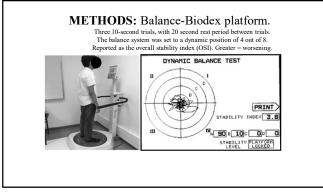

36


- The purpose of this study was to investigate any differences in sensorimotor control, disability, and autonomic dysfunction in chronic nonspecific neck patients with a thoracic hyperkyphosis compared to matched control participants with a normal kyphosis.
- We hypothesized that those with thoracic hyper-kyphosis would have impaired sensorimotor control and autonomic dysfunction compared to those with a normal kyphotic thoracic alignment.

Critical (Acress)
 Critical (Acress)

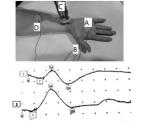

37


38


39

40

41

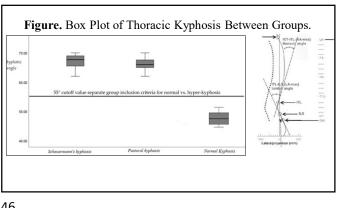


42

METHODS: Sympathetic Skin Resistance Response (SSRR)

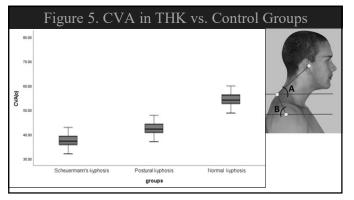
A) Active surface electrodes were attached on the palmar side, B) References were placed on the dorsum of the hand. C) Ground. D) Stimulating Electrode.

- Followed Previously Published Validated Protocol:
 20 minutes in a room with a temperature of 22-24°C.
 Measurements were taken from both left and right sides.
 An intensity of 20-30 mA with an irregular interval of more than one minute was applied to prevent habituation.
 Skin potentials were recorded for a 10 s analysis period.
 Mean values of three trials were used for each parameter.
 Sweep speed was 500 ms / div.
 Latency and Amplitude.

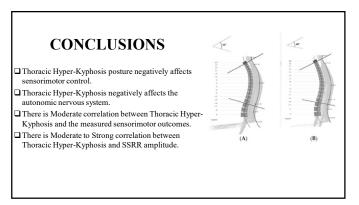

43

Variables	Postural Kyphotic (n = 80)	Normal (n = 80)	P value	
Age (years)	25.1 ± 3	24 ± 4.6	0.07	
Weight (kg)	66 ± 10	60 ± 9	0.9	
	Sex			
Male	38	32	0.2	
Female	42	48		
	Marital status			
Single	61	59	0.3	
Married	19	21		
Separated, divorced, or widowed	0	0		
Pain duration (months)	18 ± 4	17±5	0.16	
Smoking				
Light smoker	29	32	0.4	
Heavy smoker	14	15		
No Smoker	37	33		
Chi squared test for	categorical and Student's t-t	act for continuous vari	ablac	

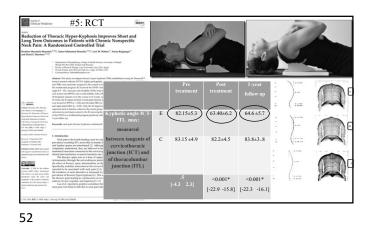
44



45

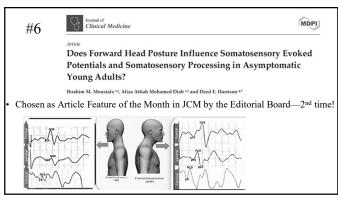


Variables	Kyphotic group	Normal Group	Cohen's d effect size	P value [95% CI]
CVA (°)	41 ± 5	53 ± 4	2.65	<.001* [10.6, 13.4
Smooth pursuit neck tor- sion test (% error)	0.41 ± 0.17	0.31 ± 0.14	0.6	<.001*
**Overall stability index (refer to methods)	0.62 ± 0.2	0.42 ± 0.1	1.26	<.001*
Head repositioning accuracy (°) Right	4.0 ± 1.5	3.0 ± 1.2	0.74	< .001*
Head repositioning accuracy (°) Left	4.3 ± 1.8	3.3 ± 1.5	0.6	<.001*
Sympathetic skin re- sistance Amplitude	2.9 ± .9	2.1 ± .7	.87	<.001* [-0.541.05
Sympathetic skin re- sistance Latency	1.2 ± .4	$1.3 \pm .3$	0.2	0.07


ann skypnosis gro	oup statistically	worse for all m	easured varia	able excep
Variables	Postural Kyphosis N=35	Scheuermann's Kyphosis N=45	Cohen's d effect size	P value [95% CI]
CVA (°)	44 ± 4	38.5 ± 4.5	1.28	< .001*
Smooth pursuit neck torsion test (% error)	0.34 ± .13	$0.48 \pm .18$	0.87	< .001*
Overall stability index (refer to methods)	0.56 ± .2	0.68 ± .3	0.46	< .001
Head repositioning accuracy (°) Right	3 ± .7	4.8 ± 1.6	1.4	< .001*
Head repositioning accuracy (°) Left	3.8 ± 2	4.7 ± 1.6	0.5	0.04*
Sympathetic skin resistance Amplitude	2.4 ± .6	3.3 ± 1	1.06	< .001*
Sympathetic skin re- sistance Latency	1.3 ± .3	1.2 ± .5	0.24	_29

ing correlations o	etween varia	bles with sign	inficantly	greater correlation	ns for Postural Kyph
Correlation between variables	Postural Kyphosis r (p value) N = 35	Scheuermann's Kyphosis r (p value) N = 45	Normal group r (p value) N = 80	Entire sample r (p value) N = 160	ICT-ITL KA-m thoracig angle
CVA	-0.7 (< 0.001)	-0.6 (< 0.001)	-0.51 (< 0.001)	-0.61 (< 0.001)	117
NDI	0.58 (< 0.001)	0.50 (< 0.001)	0.51 (< 0.001)	0.67 (< 0.001)	
Pain intensity	0.5	0.35	0.34	0.53	TL-B.S.(LA-max)
(NRS)	(< 0.001)	(0.03)	(0.043)	(< 0.001)	
Smooth pursuit neck	0.54	0.50	0.50	0.58	fumber angle
torsion test	(< 0.001)	(< 0.001)	(< 0.001)	(< 0.001)	
Overall stability	0.61	0.49	0.52	0.59	m.
index	(< 0.001)	(< 0.001)	(< 0.001)	(< 0.001)	
Head repositioning	0.7	0.54	0.61	0.74	A Contraction
accuracy (Right)	(< 0.001)	(< 0.001)	(< 0.001)	(< 0.001)	
Head repositioning	0.67	0.52	0.61	0.71	1X
accuracy (Left)	(< 0.001)	(< 0.001)	(< 0.001)	(< 0.001)	
Sympathetic skin	0.7	0.56	0.61	0.69	-100 ci 100
resistance amplitude	(< 0.001)	(< 0.001)	(< 0.001)	(< 0.001)	Lateralprojestion (mm)
Sympathetic skin	-0.2	-0.5	-0.36	-0.49	
resistance latency	(0.05)	(< 0.001)	(< 0.001)	(< 0.001)	

50



51

(A) (B) (C)

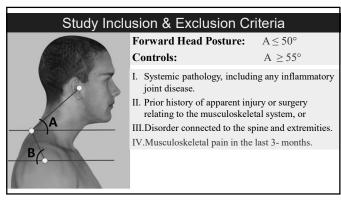
53

54

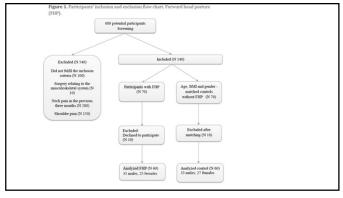
Design & Setting

Design: Pan African Clinical Registry.

<u>Setting</u>: University research PT Dept, Cairo, University.
 Ethical approval number: REC-105 21-03-11-03-S

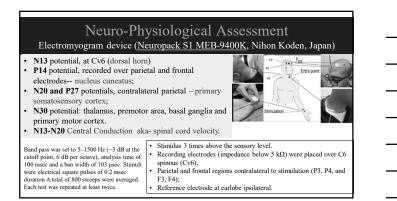

Participants Case-Control: Study or Control:

· Study-60 subjects with definite forward head


Control 60 normal posture: age-, sex-, and body mass index (BMI)-matched
 Sample size & Stats:

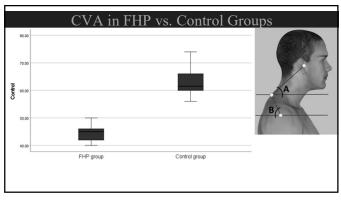
Mean differences and standard deviation of the N30 potential were estimated to be 0.5 and 0.6, respectively, from this study. Accordingly, at least 60 subjects per each group, Significance level of 5% and a statistical power of 80%, were needed in the current study.

55

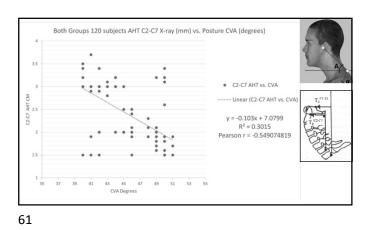


56

57



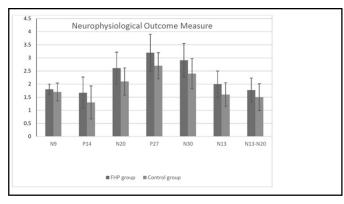
58


		<u>^</u>	- ^
Variable	FHP (n = 60)	CG (n = 60)	P-value
Age (years)	23.5 ± 2	25.9 ± 2	.07
Weight (kg)	67.2 ± 3	69.2 ± 5	.11
	Gender (%)		
Male	35 (58%)	33 (55%)	.3
Female	25 (42%)	27 (45%)	
	Smoking	02.0	156
Light smoker	18	16	.2
Heavy smoker	0	0	
No Smoker	42	44	
	Educational level		
Bachelor or Master	43	36	< .005
High school or less	17	24	
	Marital status		
Married	32	24	< .005
Not married	28	36	
	BMI		
Normal	45	26	< .005
Obese	15	34	1
	Working hours		
Full time	22	42	< .005
Part time	38	18	

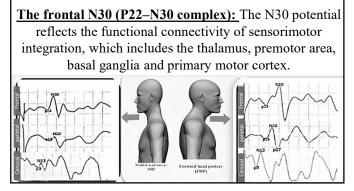
A generalized linear model was used to compare the neurophysiological scores between groups, with adjustment for potential confounding variables (educational level, marital status, BMI, and number of working hours per week). Multiple logistic regression models were used to assess the predictors of the neurophysiological outcomes: (P14, 231 N20, P27, N30, N13, and N13-N20).

59

60

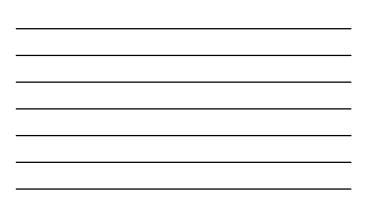


RESULTS: Group Differences. (A) = GLM P Value (A) Neurophys FHP group Mean Diffe (95% CI) / Contro P value logical group ence between Cohen's d Outcome the two Measure groups 0.6 N9 1.8 ± 0.2 1.7 ± 0.34 0.1 [0.07,0.21]/0.1 = .07 < .005 .02 P14 1.67 ± 0.6 1.3 ± 0.63 0.37 [0.25, 0.49] / 0.77 N20 2.61 ± 0.61 2.1 ± 0.52 0.51 [0.33, 0.6]/0.9 < .005 <.005 3.2 ± 0.7 0.5 <.005 P27 2.7 ± 0.5 [0.41 , 0.69] / 0.8 .04 N30 2.4 ± 0.58 0.51 [0.359, 0.69] / 2.45 <.005 .003 2.91 ± 0.64 N13 2 ± 0.5 1.6 ± 0.45 0.4 [0.11, 0.35] / 0.8 <.005 .004 N13-N20 1.77 ± 0.46 1.5 ± 0.51 0.27 [0.07, 0.51]/0.56 = .004 < .005


-	

62

63



Corre	lations Bo	etween FHP	& Variables
Correlation	CVA FHP	CVA CG	
	r (P value)	r (P value)	
N9 (Peripheral)	44	5	
	< 0.001	< 0.001	
N13 (Spinal)	67	54	
	< 0.001	< 0.001	
P14 (Brainstem)	58	57	
	< 0.001	< 0.001	1 1
N20 (Parietal)	49	51	
	< 0.001	< 0.001	A
P27 (Parietal)	58	6	
	< 0.001	< 0.001	B
N30 (Frontal)	64	61	
Sensori-Motor Integration	< 0.001	< 0.001	
N13-N20	61	56	
Central Conduction Time	<0.001	<0.001	

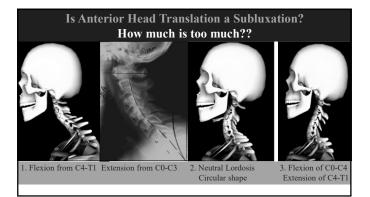
Full time work incre						
neurophysiological	potentials ar	nd slower I	N13-N20 c	onduction	time; $p < 0$.	.005.
1 9 0 1	L				· 1	
F 1 4 1 ·		17A 1	1.0	1		
Each 1 degree increa						nais and
resulted in a faster n	nore efficien	t N13-N20	conductio	on time; p <	< 0.005.	
	P14	N20	P27	N30	N13	N13-N20
Predictors	Odds ratios	Odds ratios	Odds ratios	Odds ratios	Odds ratios	Odds ratio
Treaterory	(p value)	(p value)	(p value)	(p value)	(p value)	(p value)
Di di col - di - di			- u - /		4 /	4 7
BMI [Obesity]	.4	.23	.13	.16	.2	.2
	.06	.06	.3	.34	.06	.06
Educational level	1.2	3.2	2.3	1.2	2.4	1.5
[Bachelor or Master]	.4	.08	.3	.4	.32	.42
Marital status	1.54	1.54	1.3	1.3	1.5	1.8
[Not married]	.2	.2	.3	.3	.2	.09
Weekly working hours	13.1	12.4	19.5	25.9	28	19.4
[full time]	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
CVA	.41	.3	.3	.57	.23	.34
	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	(< 0.005

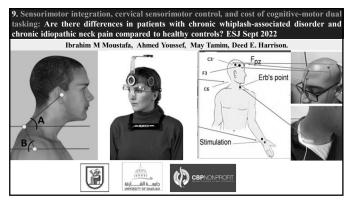
66

Discussion & Conclusion

FHP alters Central Conduction time.

□FHP alters somatosensory processing.


FHP alters sensori-motor integration- N30.Strong correlation between FHP and cervical


sensorimotor integration and SEP. □ Full time work increased the odds of having a higher amplitudes of SEPs and slower N13-N20 conduction.

□Each 1 degree increase in the CVA (better FHP) was found to decrease the amplitudes of somatosensory processing potentials and resulted in a faster N13-N20 conduction time.

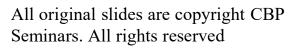
67

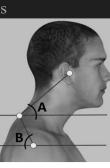
68

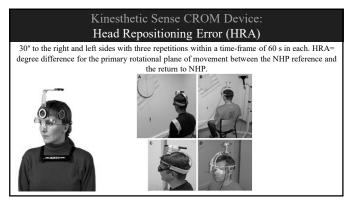
69

Study Hypothesis

- To evaluate differences in forward head posture, sensori-motor integration, sensorimotor control, and 7-Meter walking speed cognitive task cost in people with:
- 1. Chronic Whiplash Grade 2,
- 2. Chronic Idiopathic Neck Pain,
- 3. Normal controls strictly matched.

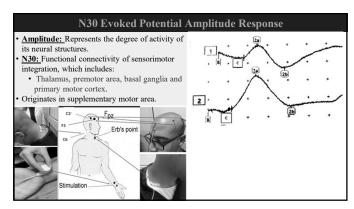

We hypothesized that WAD patients would have the greatest forward head posture leading to impaired sensorimotor control and increased cost of walking with a cognitive task.


71


Design & Setting

- **Design:** Pan African Clinical Registry. **Setting:** University research PT Dept, Cairo, University.
- Participants Case-Control:
- Study-30 subjects with WAD Grade II: 3-months to 1-year
- 30 Idiopathic chronic neck pain persons 3 months tp1 year
- 30 Controls no neck pain and history of trauma.
- Matched for age-, sex-, and body mass index (BMI)-matched Sample size & Stats:
- 1. 30 persons were needed in each group.
- 2. Multivariate analysis of covariance (MANOVA) group comparison
- Pearson's r used to examine correlations between CVA amongst the 3-groups and main outcome variables.

72

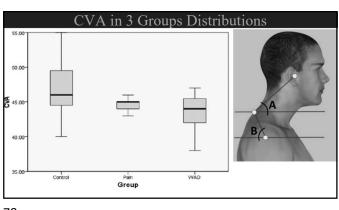


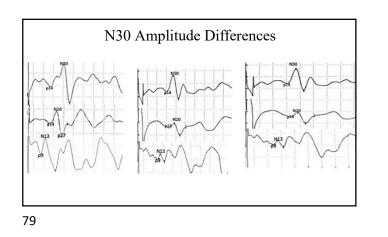
	F (1 1	_	. 11	•	1
- N	/lethods	/ me	ter wall	ZING	cneed
11	neunous	- / IIIC	ici wan	NHI2	sheed

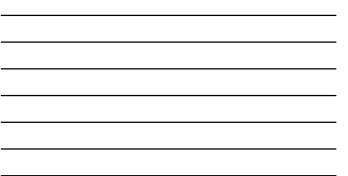
- 1. Gait Speed Test was initially used to measure speed of walking 7 meters at normal pace.
- 2. Then, same 7-meter distance, participants were given a letter (e.g., S, T, or M depending on the day of the month they were born) and instructed to list as many animals as they could think of whose names began with that letter (i.e., Dual Task).
- 3. The cost of cognitive-motor dual tasking while walking was calculated using the equation:

(single gait speed — dual gait speed) /
÷
single gait speed x100

74

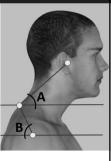



RESULTS: Group Differences						
	WAD (N=30)	Idiopathic (N=30)	Control (N=30)			
Age (years)	48 ± 2	47 ± 1	48 ± 2			
Weight (kg)	91 ± 5	88 ± 4	89 ± 7			
Gender (%)						
Male	10	10	10			
Female	20	20	20			
Smoking status						
Non smoker	20	19	22			
Smoker	10	11	8			
NRS pain intensity	5.5 ± 1	6 ± 1	-			
Pain duration (weeks)	24 ± 2	25 ± 3	-			
Cranio-vertebral angle (CVA)	36.8 ± 3.4	44.51 ± 1.5	47.12 ± 4			
N30 (µV)	$2.11 \pm .38$	$1.59 \pm .33$	$1.31 \pm .420$			
HRA (right rotation) (°)	$3.03 \pm .611$	$2.37 \pm .44$.35 ± .20			
HRA (left rotation) (°)	$3.03 \pm .61$	$2.37 \pm .44$.35 ± .20			
Cognitive cost %	42.56 ± 16	25.7 ± 10.41	8.55 ± 7.20			

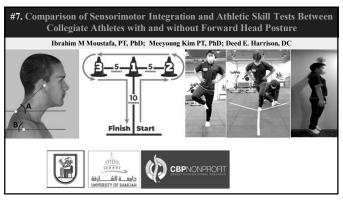

	WAD (N=30) Idiopathic pain Control					
		(N=30)	(N=30)			
ain Anxiety Symptom Scale	42.2±6.1	39.5±6.9	Not conducted			
otal score			for this group			

77

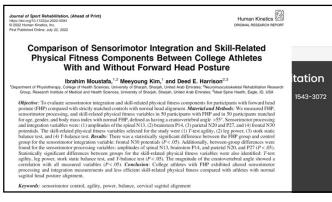
78

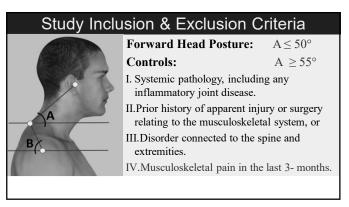

Correlations Between FHP & Variables						
Correlation	WAD group Pearson's r P value	PAIN group Pearson's r P value	Control group Pearson's r P value			
N30 amplitude	-0.6 <0.001	5 .004	-0.39 0.02			
Cognitive cost	5	4	-0.6	A		
during walking	.004	<0.007	<0.001	B		
HRA Right	47 <0.007	-0.41 .019	-0.21 .2			
HRA Left	36 .004	50 .004	-0.6 <0.001			

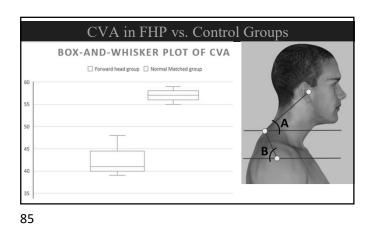
Discussion & Conclusion

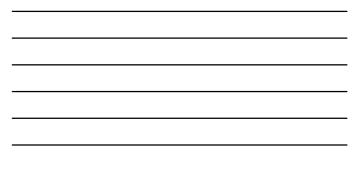

- Graph FHP negatively affects cervical sensori-motor integration- N30 Amplitude.
- Graphic FHP negatively affects sensori-motor control-Head repositioning accuracy.

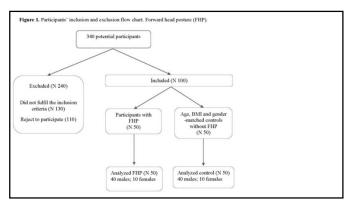
Forward head posture negatively affects dual task cognitive walking—Motor Control.There is strong correlation between FHP and


sensori-motor integration, sensori-motor control, and dual task cognitive function.

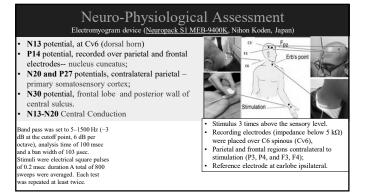

81


82





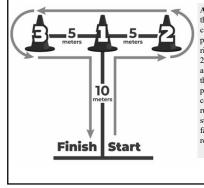
84



Variable	FHP (n=50)	CG (n=50)
Age (years)	20.5 ± 2	20 ± 3
Weight (kg)	61.2 ± 4	62.2 ± 5
BMI	18.4 add SD here	18.3 add SD here
Gender (%)		
Male	40 (80%)	40 (80%)
Female	10 (20%)	10 (20%)
Sport,* Number in percent (%)		
Handball	20 (40%)	21(42%)
Volleyball	5 (10%)	5 (10%)
Basketball	25 (50%)	24 (48%)
P14	.96±.22	.68 ± .21
N20	2.4 ±.4	1.9 ± .27
P27	1.98±.27	1.64 ± .32
N30	2.6±.34	2 ± .41
N13	1.16 ± .16	.77 ± .10
Agility	8.89±.49	7.88±.51
Leg power	33.28 ± 2.9	42.14 ± 3.3
Stork Static Balance Test	45.5 ± 4.2	55.8 ± 4.3
Y-Balance Test	86.07 ± 2.02	92.77 ± 2.36


The stork test was performed to assess static balance.[22] Participants stood on their dominant leg with their opposite foot leaning against their standing knee and with both hands on their hips. On the "go" signal, they raised the heel of the standing leg from the floor. The posture was held as long as possible. The test was terminated when the raised heel touched the ground, or when the opposite foot moved away from the standing knee.

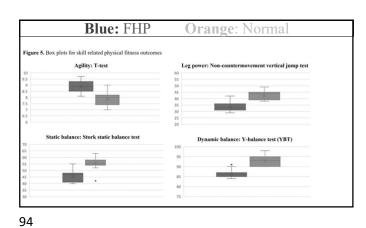
89


YBT Dynamic balance was assessed on the dominant leg. Participants' leg lengths were first determined while lying supine, measuring from the anterior superior iliac spine to the most distal aspect of the medial malleolus. They, then, stand on the dominant leg with the great toe placed at the center of installed floor marking tapes aligned in 3 directions (anterior, postero-medial, and postero-lateral). The 2 posterior lines extended at an angle of 135° from the anterior line. Participants were asked to reach in the 3 directions while maintaining a single-limb stance. The maximal reach was measured in each direction. The composite score (CS) was calculated as: CS = ([maximum anterior reach distance + maximum postero-medial reach distance + maximum postero-lateral reach distance] / [leg length \times 3] \times 100).[23] Three trials were conducted in each direction with a rest interval for 2-minute.

90

Leg power: Noncountermovement vertical jump test. Participants stood with their feet shoulder-width apart. They were asked to jump as high as possible after a brief squat pause with knees in 70° flexion. Participants marked their highest point of the jump using one hand on the wall. The average of 3 trials was recorded as the vertical jump height.

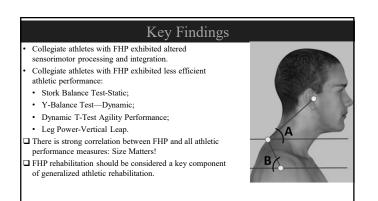
91

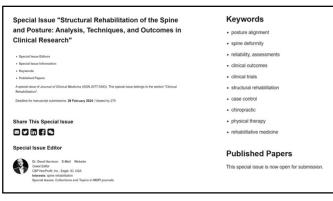


Agility T-test. Starting at the bottom of the T, the participant runs to the top center of the T (position 1). Next, from position 1, the participant shuffles to the right to position 2. Third, from position 2, the participant shuffles all the way across to their left to position 3. Fourth, the participant then shuffles from position 3 back to the position 1 at the center of the T. Finally, the participant runs backwards from position 1 to the start position (bottom of the T). The fastest trial of three attempts was recorded.

92

Neurophysiological Outcome Measure	Mean Difference between groups‡	(95% CI)	Cohen's d	p-value
P14	0.28	[0.20 0.36]	1.36	< 0.005
N20	0.42	[0.29 0.55]	1.46	< 0.005
P27	0.43	[0.33 0.54]	1.14	< 0.005
N30	0.6	[0.31 0.72]	1.59	< 0.005
N13	0.39	[0.34 0.44]	2.9	< 0.005
T-test agility	1.01 seconds	[0.83 1.2]	2.01	< 0.005
Leg power	-8.86 cm	[-10.01 -7.6]	2.85	< 0.005
Stork Static Balance Test	-10.3 seconds	[-11.8 -8.7]	2.40	< 0.005
Y-Balance Test	-6.7 not simple	[-7.5 -5.9]	2.42	< 0.005


93


_		

Correlation	CVA FHP r (p value)	CVA CG r (p value)	
N13	61 <0.001	49 <0.001	
P14	52 <0.001	51 <0.001	67
N20	51 <0.001	50 <0.001	
P27	5 <0.001	64 <0.001	A
N30	69 <0.001	61 <0.001	B
T-test agility	51 <0.001	53 <0.001	
Leg power	.61 <0.001	.55 <0.001	
Stork Balance Test	.71 <0.001	.58 <0.001	
Y-Balance Test	.63 <0.001	.54 <0.001	

95

96

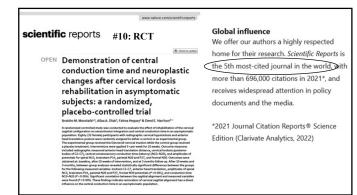
97

98

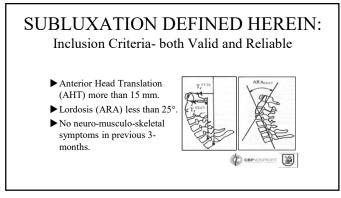
Conclusions

- Posture parameters, in terms of rotations and translations of the head, thorax and pelvis, were statistically correlated with physical performance skills and cardiopulmonary function.
- There were moderate-to-high associations with cardiopulmonary functions and agility tests, moderate correlations with the vertical jump test, and weak correlations with the YBT.
- Postural alignment may be important for optimal physical performance and optimal cardiopulmonary function. Further research is necessary to elucidate reasons for these correlations as found in our sample of young and healthy athletes.

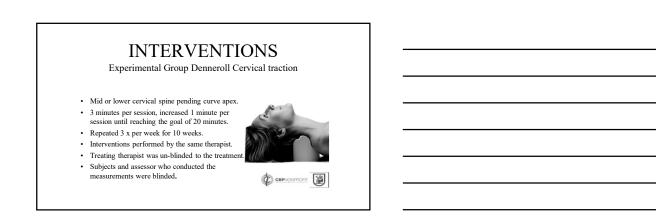
99


Are Rotations and Translations of Head Posture Related to Biomechanical Parameters in Three Different Dynamic Tasks?

Nabil Saad, PT;¹ Ibrahim M. <u>Moustafa</u>, PT, PhD;¹<u>2</u> <u>Amal Ahbouch</u>, PT, MSc¹ Nour Mustafa <u>Alsaafin</u>, PT;¹ Paul A. Oakley DC, MSc, PhD(c);³⁴ Deed E. Harrison, DC³⁴


1 Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; 2 Neuromusculoskeletal Rehabilitation Research Group, RIMHS-Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab <u>Emirates;</u> 3 Independent Researcher, Newmarket, ON L3Y 8Y8, Canada 4 Kinesiology and Health Sciences, York University, Toronto, ON M3J 1P3, Canada

5 CBP Nonprofit (a spine research foundation), Eagle, ID, USA.
 * Correspondence <u>drdeed@idealspine.com</u>; <u>drdeedharrison@gmail.com</u>

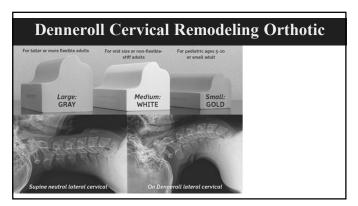

100

101

102

INTERVENTIONS Control Group Received Placebo

- A small cervical lower was used as placebo intervention. To mimic the denneroll traction without applying significant cervical extension.
- Applied 3 x per week for 10 weeks.
 Began at 3 minutes per session and increased 1-2 minutes per session until 20 minutes per session.



CBPNONPROFIT

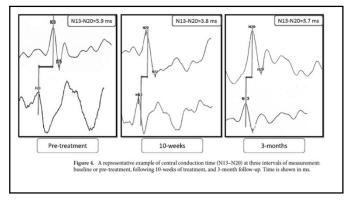
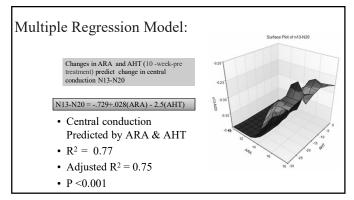

104

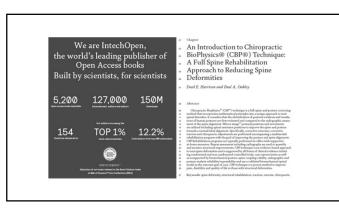
	Table 2.									
Differences between treatment groups										
3-month, 10-Week Follow Up				After 10 Weeks of Treatment						
Р	6 CI)	(95%	Mean Difference‡	Р	CI)	(95%)	Mean Difference‡			
< 0.005	36 to 1.389]	[1.086	1.2	< 0.005	1.4]	[1.09	1.3	E vs. C	AHT (Cm)	
< 0.005	3 -10.2]	[-15.3	-12.7	< 0.005	-12.2]	[-15.3	-13.8	E vs. C	ARA (°)	
< 0.005	2 0.40]	[0.22	.31	< 0.005	0.43]	[0.25	.34	E vs. C	P14	
< 0.005	0.65]	0.36	.51	< 0.005	0.59]	[0.33	.46	E vs. C	N20	
< 0.005	0.68]	[0.41	.6	< 0.005	0.65]	[0.37	.5	E vs. C	P27	
< 0.005	0.67]	[0.40	.45	< 0.005	0.62]	[0.35	.49	E vs. C	N30	
< 0.005	0.38]	[0.21	.29	< 0.005	0.29]	[0.11	0.2050	E vs. C	N13	
< 0.005	2 0.57]	[0.32	.45	.004	0.32]	[0.06	.19	E vs. C	N13-N20	
	0.38]	[0.21	.29	< 0.005	0.29]	[0.11	0.2050	E vs. C	N13	

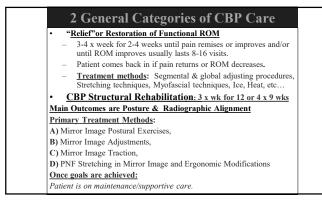

105

106

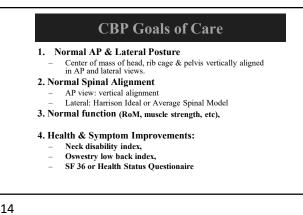
107

			10-Weeks treatment mean (SD)	3-Month follow-up mean (SD)	10-Week versus baseline			3-Month versus baseline				
Measure	Croup	Baseline mean (SD)			Mean difference (95% CI)	,	Effect size Cohen d	Effect size r	Mean diff (95% CI)	P	Effect size Cohen d	Effect size #
	ε	2.4 ± 0.4	1.01±0.5	1.18±0.5	1.3 [1.153- 1.557]	< 0.005	3.06	0.83	1.2 [0.97-1.40]	<0.005	2.69	0.8
AHT (Cm)	с	23±03	2.27±0.2	2.4±0.12	.4 [- 0.02- 0.10]	0.19	0.1	0.058	-0.10 [-0.16- 0.046]	0.21	- 0.43	- 0.21
ARA (*)=	E	4.16±4.15	18.1±2	17.9±1.9	- 14 [- 14.7- 13.24]	< 0.005	- 4.2	- 0.9	- 13.78 [- 14.6-12.9]	< 0.005	- 4.25	- 0.90
	c	42145	43144	5.1 ± 7.8	- 0.055 [- 0.17- 0.059]	0.34	- 0.02	- 0.01	- 0.8925 [- 2.92-1.13]	0.38	- 0.14	- 0.070
	Ε	0.96±0.21	0.68±0.2	0.715±0.18	0.27 [- 0.22- 0.32]	< 0.005	14	0.57	0.24 [0.21-0.27]	<0.005	1.36	0.564
P14	C.	1.045±0.24	1.03±0.21	1.03±0.2	0.015 [-0.008- 0.038]	0.2	0.04	0.02	0.015 [-0.014- 0.044]	0.3	0.06	0.033
	E	2.44±0.4	2.01 ± 0.26	1.97±0.25	0.43 [0.37-0.49]	< 0.005	1.27	0.53	0.47 [0.415-0.52]	<0.005	1.40	0.57
N20	с	25±0.38	2.475±0.32	2.5±0.4	0.037 [-0.0075- 0.082]	0.1	0.02	0.013	0.027 [- 0.01- 0.066]	0.16	0.0	0.0
	Ε	19±02	1.4±0.32	1.49±0.29	0.43 [0.32-0.52]	< 0.005	1.96	0.70	0.41 [0.32-0.49]	<0.005	1.64	0.635
N27	с	2.02±0.4	2.64±0.3	2.045±0.5	0.025 [-0.023- 0.073]	0.3	- 0.056	- 0.028	- 0.025 [- 0.045- 0.064]	0.016	- 0.05	- 0.027
	E	1.9±0.2	1.57±0.3	1.57±0.3	0.4 [0.3039- 0.5061]	< 0.005	1.29	0.543	0.4 [0.3145- 0.4905]	0.007	1.29	0.543
N30	с	21±03	2.06±1.06	2.1±0.3	0.03 [-0.023- 0.07]	0.27	0.156	0.87	- 0.027 [- 0.05- 0.003]	0.03	0.21	0.107
	E	57±03	5.4±0.4	5.2±0.2	0.282 [0.20-0.36]	< 0.005	0.84	0.39	0.44 [0.41-0.46]	<0.005	1.90	0.68
N13-N20	с	5.6±0.27	5.6±0.28	5.7±0.29	0.022 [-0.003- 0.04]	0.08	0.0	0.00	-0.07 [-0.13- 0.013]	0.03	- 0.35	- 0.17
NB	Ε.	1.2±0.16	0.77±0.09	0.68±0.13	0.39 [0.35-0.43]	< 0.005	0.8	0.37	- 0.4750 [- 0.5418- 0.4082]	<0.005	3.57	0.87
NIS	с	1.01 ± 0.24	0.97±0.25	0.96 ± 0.22	0.035 [-0.003- 0.073]	0.07	0.1	0.08	0.03 [-0.002- 0.06]	0.069	0.21	0.107


					10-Week versus baseline				
Measure	Group	Baseline mean (SD)	10-Weeks treatment mean (SD)	3-Month follow-up mean (SD)	Mean difference (95% CI)	Р	Effect size Cohen d	Effect size r	
	Е	1.9±0.2	1.57±0.3	1.57±0.3	0.4 [0.3039- 0.5061]	< 0.005	1.29	0.543	
N30	с	2.1±0.3	2.06±1.06	2.1 ± 0.3	0.03 [- 0.023- 0.07]	0.27	0.156	0.07	


1	1	n
т	т	υ

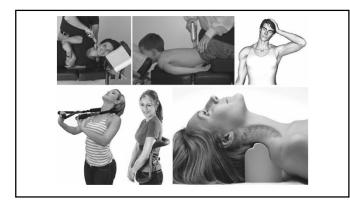
CBP Directories & Systems! https://chiropractic-biophysics.myshopify.com/pages/signup


- 1. CBP Providers: <u>www.CBPpatient.com</u>
- 2. Denneroll Providers: <u>www.DennerollDocs.com</u>
- 3. Online Courses:
- <u>https://webexercisesacademy.com/?s=deed+harrison</u>
- <u>www.IdealSpine.CE</u>
- 10% off CBP Products—Online Only
- AAC2023

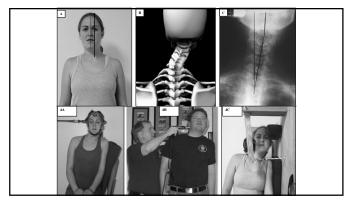
111

113

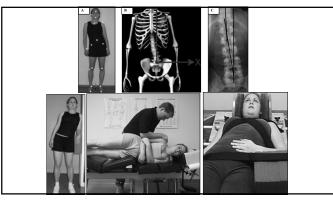
The CBP Dr.'s Tool Box

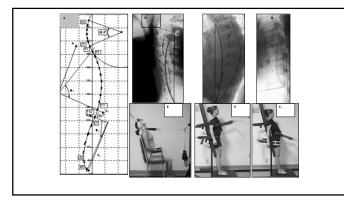

Traditional Chiropractic Methods:

- 1) Segmental Adjusting (Improves Range of Motion & Relief),
- 2) Soft Tissue Mobilization (Relief),
- 3) Spinal & Extremity Stretching (Relief),

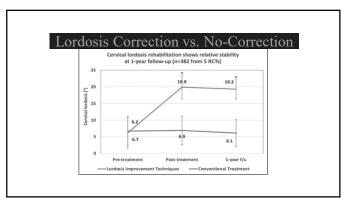

CBP Structural Rehabilitative methods:

- 1) Mirror Image® Spinal/Postural Adjustment
- 2) Mirror Image® Spinal/Postural Exercise
- 3) Mirror Image® Spinal/Postural Traction
- 4) Ergonomic Education/Life style Modification

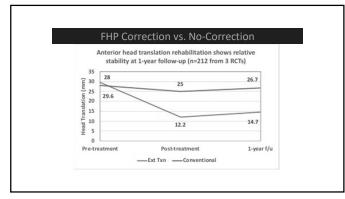

115

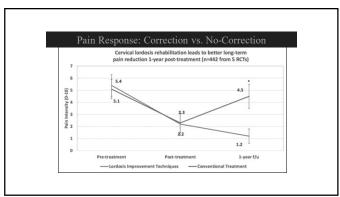

116

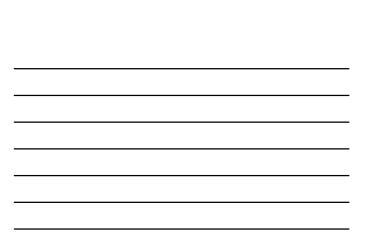
117


118




119

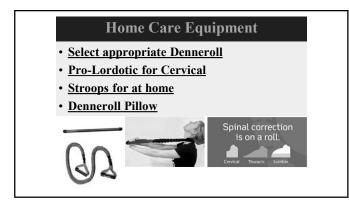

120



122

123

CBP® Intervention


- From our publications, mirror image® exercises & traction procedures should be performed <u>in-office</u> at least 3-4 times per week for 9-12 weeks;
- Shown to achieve significant improvement in abnormal alignment of the spine and in patients' chronic disorder(s).1-5

124

CBP Directories & Systems! https://chiropractic-biophysics.myshopify.com/pages/signup

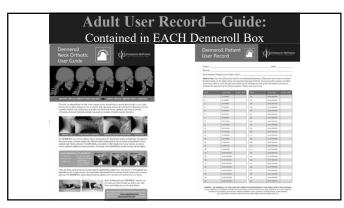
- 1. CBP Providers: <u>www.CBPpatient.com</u>
- 2. Denneroll Providers: www.DennerollDocs.com
- 3. Online Courses:
- <u>https://webexercisesacademy.com/?s=deed+harrison</u>
- <u>www.IdealSpine.CE</u>
- 10% off CBP Products—Online Only
- AAC2023

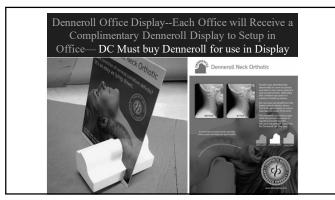
125

126

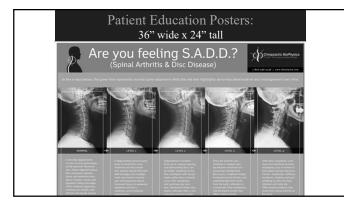
127

Billing & Documentation for Denneroll as a Home Orthotic: Bill min. of \$100.-\$200.

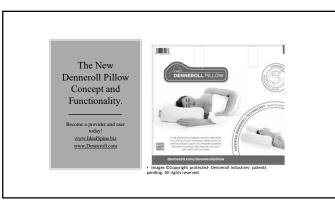

- DME (durable medical equipment) Cervical Code - E0855 with
- NU modifier---Indicating Separate and distinct sent home.
- Letter of Medical Necessity: See Deed's Ex. Fill OutActivities of Daily living eval: NDI for example
- Activities of Daily living eval: NDI for example
- Exact product description: Send Denneroll user guide & Both Patient and Doctor must SIGN user guide!
- Send All of Above in for Completeness!

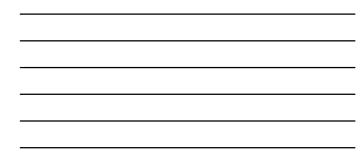

128

"Other" Codes for Denneroll DME

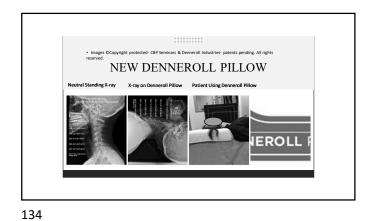

- 97535 Self Care "instructions for use of assistive technology devices/adaptive equipment" for the purpose of instruction in managing his or her injury at home and preventing secondary injury
- 97760 "Orthotics fitting for upper extremities, lower extremities and/or trunk. Any training time associated with using the orthotic may be reported using 97760"

129

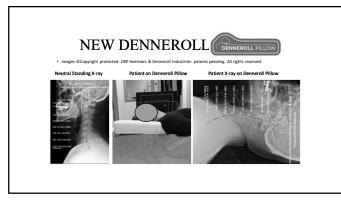


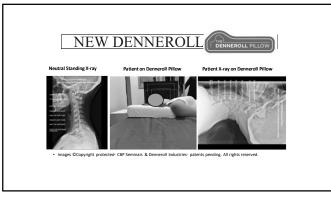


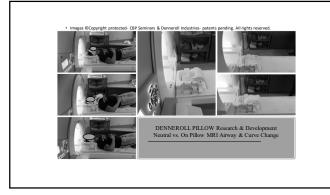
131

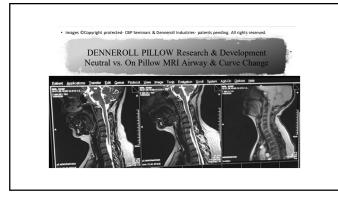


132



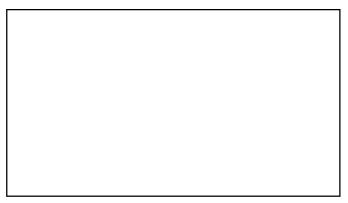

133

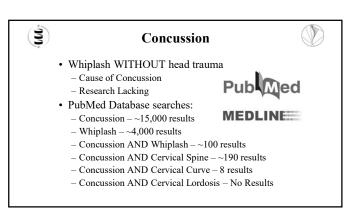


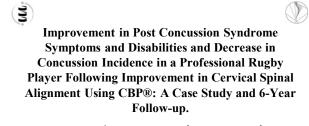

135

136

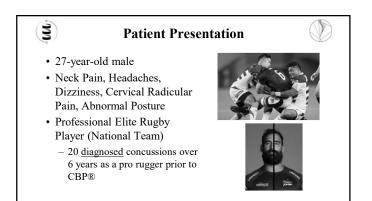
137

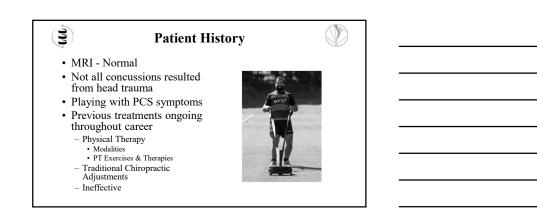

138


139

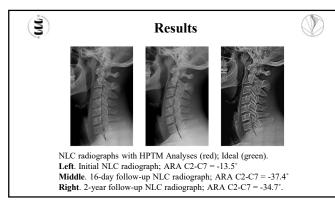

140

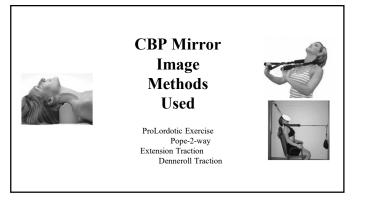
141

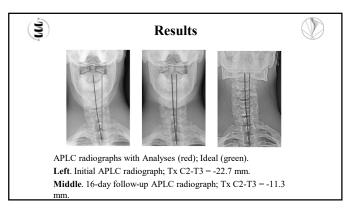




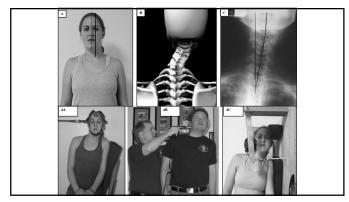
Seth Strauss, DC¹, Douglas F Lightstone, DC², Curtis Fedorchuk, DC², Paul Oakley, DC, MSc³, Robert Pomahae, DC³, Deed E Harrison, DC³ ¹Private Practice, Mount Pleasant, SC, USA ²Institute for Spinal Health and Performance, Cumming, GA, USA ³CBP® Nonprofit, Eagle, ID, USA

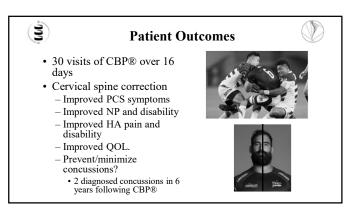

143


144

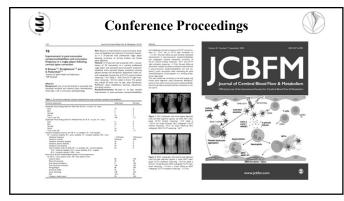

145

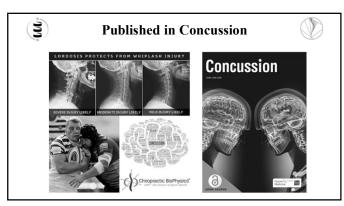
146


147


148

149


150


151

152

153

154